Factors Influencing the Permeability of []____ Hot-Mix Asphalt Mixtures

> Louay N. Mohammad Ananda Herath, Zhong Wu, Sam Cooper

Louisiana Transportation Research Center

Louisiana Asphalt Technology Conference February 23-24, 2005 Shreveport, Louisiana

I Presentation Outline

Introduction and Background
Permeability
Air Voids Measurements
Results
Prediction Models
Summary and Conclusion

What Is Permeability?

Important characteristic of asphalt mixtures

- Drainability characteristics

 Defined as rate of flow of a fluid through a material based on Darcy's Law

 $- Q=KA(h_1/h_2)/L$

Properties that Affect Permeability

Aggregate size, shape, and gradationAir Voids

- Effective porosity

Effective Porosity

Definition:

Percentage of water permeable voids

Importance of Effective Porosity:

- Defining durability
- Assessment of water damage

How is Permeability Measured?

Laboratory permeability tests

- Falling-head
- Constant-head

Field permeability test

Air voids vs Permeability

Generally, <u>permeability</u> of asphalt mixtures is assumed proportional to air void of compacted asphalt mixtures
 High air voids in a pavement allow:

water to enter and cause stripping damage

Compare air voids estimated from:

- AASHTO T166, vacuum sealing, gamma ray, effective porosity
- Evaluate the relationships among
 - Permeability, air voids, and effective porosity
- Develop permeability prediction models
 - K=f(Air voids, effective porosity, and gradation characteristics)

I III SCOPE

Scope

10 Total Mixtures

- Mixture Types:
 - o 8 Superpave and 2 Marshall
- o Design Levels:
 - o Level 1:1
 - o Level 2: 1
 - o Level 3: 6+2
- Nominal Maximum Aggregate Sizes:
 - o 1/2" NMS: 2
 - o 3/4" NMS: 6
 - o 1" NMS: 2
- o Grade Types:
 - o 8 Wearing Coarse and 2 Binder Coarse
- o Aggregate Gradation Types:
 - o 6 Coarse-Graded, 4 Fine-Graded
- □ In general, triplicate sets of samples were tested

Gradation Chart for 12.5 mm

Gradation Chart for 19.0 mm

Gradation Chart for 25.0 mm

Experimental Program

Samples
quality acceptance field cores
Air void measurements
Permeability testing

Air Voids Measurement

ConventionalVacuum SealingGamma Ray

Conventional Air Void (AASHTO T166) [//// Test

Dry Weight Submerged Weight

SSD Weight

I Vacuum Sealing Method (Air Void)

Dry Weight Vacuum Sealing Device

Vacuum Sealing Submerged Weight

Gamma Ray Method (Air Void)

Effective Porosity Procedure

Dry weight

Vacuum sealing

Submerged weight

Submerged sample weight with the open bag

I Laboratory Permeability

Falling head
ASTM PS –129
Karol-Warner permeameter

Permeability Procedure

Discussion of Results

Conventional(V_a) vs. Vacuum Sealing (V_{VAC})

Va, %

$$V_{VAC} = 1.1V_a + 0.2$$

Conventional (V_a) vs. Gamma Ray (V_{VGR})

$$V_{VGR} = 1.1V_a + 0.9$$

I______ Vac. Sealing (V_{VAC}) vs. Eff. Porosity (P_e)

I Vac. Sealing (V_{vac}) vs. Gamma Ray V_{GR}

Mean Air Voids from Different Test Procedures

Permeability vs. Conventional V_a

$$K = 10^{-4} \left(23.1 V_a^2 - 160.6 V_a + 279.6 \right)$$

I Permeability vs. Gamma Ray (V_{GR})

$$K = 10^{-4} \left(13.7 V_{GR}^2 - 97.4 V_{GR} + 143.2 \right)$$

| | | | | | Permeability vs. Vacuum-sealed (V_{vac})

EXAMPLE 1 Permeability vs. Effective Porosity (P_e)

$$K = 10^{-4} \left(23.8 P_e^2 - 173.8 P_e + 278.4 \right)$$

Effects of Gradation on Permeability and Air Voids: Coarse vs. fine

$$K = 10^{-4} \left(19.9 V_a^2 - 125.9 V_a + 201.8 \right)$$

$$K = 10^{-4} \left(35.0 V_a^2 - 299.8 V_a + 646.1 \right)$$

Effects of Gradation on K and P_e: Coarse vs. fine

$$\begin{array}{c}
1500 \\
\hline
1500 \\
\hline
1250 \\
\hline
1250 \\
\hline
1000 \\
\hline
1000 \\
\hline
1000 \\
\hline
1250 \\
0 \\
0 \\
0 \\
4 \\
P_e(\%)
\end{array}$$

$$K = 10^{-4} \left(22.5 P_e^2 - 158.4 P_e + 236.3 \right)$$

$$K = 10^{-4} \left(32.1 P_e^2 - 283.4 P_e + 617.3 \right)$$

Effects of NMS Permeability

Effects of Compaction Level on Permeability

Development of Prediction Models

- Multiple Regression Analysis
 Influencing Easter
- Influencing Factor
 - Air voids,
 - -effective porosity,
 - aggregate gradation characteristics
- Parametric analysis
 - -Suitable variables

Permeability Prediction Models

$$K_{p_{e}} = 10^{-4} \begin{bmatrix} 24.9(P_{e}^{2}) - 180.8P_{e} + 67.4P_{0.075} - 31.9P_{0.3} \\ + 55.7P_{0.6} - 36.3P_{2.36} + 4.9P_{12.50} \end{bmatrix} R^{2=0.87} RMSE=118 \times 10^{-4} \\ K_{vac} = 10^{-4} \begin{bmatrix} 23.5(V_{vAc}^{2}) - 186.8V_{VAC} + 108.6P_{0.075} - 45.0P_{0.3} \\ + 61.3P_{0.6} - 40.2P_{2.36} + 4.9P_{12.50} \end{bmatrix} R^{2=0.79} RMSE=149 \times 10^{-4} \\ K_{v_{a}} = 10^{-4} \begin{bmatrix} 23.8(V_{a}^{2}) - 147.8V_{a} + 114.5P_{0.075} - 49.1P_{0.3} \\ + 65.5P_{0.6} - 48.7P_{2.36} + 5.4P_{12.50} \end{bmatrix} R^{2=0.73} RMSE=171 \times 10^{-4} \\ K_{GR} = 10^{-4} \begin{bmatrix} 15.9(V_{GR}^{2}) - 130.5V_{GR} + 51.1P_{0.075} \end{bmatrix} R^{2=0.57} \\ RMSE=209 \times 10^{-4} \\ RMSE=209 \times 10^{-4} \\ RMSE=209 \times 10^{-4} \end{bmatrix} R^{2=0.57} \\ RMSE=209 \times 10^{-4} \\ RMSE=200 \times 10^$$

Predictions: Effective porosity and Vacuum-sealed Models

Predictions: Conventional and Gammaray Models

EVENTIAL Summary and Conclusion

Falling head permeability tests were conducted

- Gamma ray method provided higher air voids values than the other methods (vacuum sealing and AASHTO T166).
- Good correlation was observed between air voids estimated from Vacuum sealing method and AASHTO T166
- The air voids values at which K> 125x10⁻⁴ mm/s varied with the air void measurement method
 - 6.9 Gamma Ray
 - 6.7 Vacuum sealing
 - 5.8 AASHTO T166

Summary and Conclusion

- Fine-graded mixtures showed better correlations between conventional air voids and K than coarse-graded mixtures
- Similar correlations were observed for both fine- and coarsegraded mixtures between Pe and K
- Permeability increased with an increase in the mixture nominal maximum aggregate size
- No correlation was found between the compaction levels
- **Preliminary** models were developed to predict the permeability
 - based on the air voids, effective porosity, and aggregate gradation characteristics
- A good agreement was observed between the predicted and the measured permeability values from the effective porosity model

